

Problems on iterative methods for solving systems of linear algebraic equations

1) Prove that for the system

$10x_1$	$-x_{2}$	$+2x_{3}$	$-3x_4$	=	0
x_1	$+10x_{2}$	$-x_{3}$	$-2x_{4}$	=	5
$3x_1$	$+2x_{2}$	+ <i>x</i> ₃	$+20x_{4}$	=	15
$2x_1$	$+3x_{2}$	$+20x_{3}$	$-x_{4}$	=	-10

the method of simple iteration converges. If for the initial guess $x^{(0)}$ we choose the column of the right side vector, e.g. $x^{(0)} = (0,5,-10,15)^T$, how many iterations would be sufficient for calculating the solution with an accuracy of $\varepsilon = 10^{-4}$? Work in a second matrix and vector norms.

Instruction: You must rearrange the last two equations.

Answer: *k*=22 iterations.

2) Solve the following linear system using the method of simple iteration with an accuracy of $\varepsilon = 10^{-2}$.

$2x_1$	$-x_{2}$	$+x_{3}$	= -3	
$3x_1$	$+5x_{2}$	$-2x_{3}$	= 1 .	Answer: (-1,212; 1,162; 0,586).
x_1	$-4x_{2}$	$+10x_{3}$	= 0	

3) Solve the system Ax = b, where

$$A = \begin{pmatrix} 7,6 & 0,5 & 2,4 \\ 2,2 & 9,1 & 4,4 \\ -1,3 & 0,2 & 5,8 \end{pmatrix}, \quad b = \begin{pmatrix} 1,9 \\ 9,7 \\ -1,4 \end{pmatrix}$$

using the Zeidel method with an accuracy of $\frac{1}{2} \cdot 10^{-2}$. The system must be transformed to a form that is suitable of iteration x = Bx + c, where B = E - 0.1A, c = 0.1b. Choose $x^{(0)} = c$.

Answer: If you are working correctly you should derive the following approximations:

 $\begin{aligned} x^{(0)} &= (0,19; 0,97; -0,14), \\ x^{(1)} &= (0,2207; 1,0703; -0,1915), \\ x^{(2)} &= (0,2354; 1,0988; -0,2118), \\ x^{(3)} &= (0,2424; 1,1088; -0,2196), \\ x^{(4)} &= (0,2425; 1,1124; -0,2226) . \end{aligned}$

4) The following system is given

x_1		$-0,25x_3$	$-0,25x_4$	=	0,5
	<i>x</i> ₂	$-0,25x_3$	$-0,25x_4$	=	0,5
$-0,25x_1$	$-0,25x_2$	+ <i>x</i> ₃		=	0,5
$-0,25x_1$	$-0,25x_2$		$+ x_4$	=	0,5

a) By starting from $x^{(0)} = (0, 0, 0, 0)^T$, do 4 iterations using the Jacobi method.

- b) By using the same initial guess vector, do 4 iterations using the Zeidel method.
- c) Which is the accurate solution of the system?
- 5) The system Ax = b is given, where

 $A = \begin{pmatrix} 0.95 & -0.1 & 0.1 \\ 0.15 & 1.1 & -0.05 \\ -0.1 & 0.1 & 1.05 \end{pmatrix}, \quad b = \begin{pmatrix} 0.85 \\ 0.20 \\ -1.15 \end{pmatrix}.$

- a) Build an iteration process of the kind $x^{(k+1)} = Bx^{(k)} + b$, where B = E A.
- b) Prove that the iteration process converges.
- c) Find the minimum number of iterations which guarantees an accuracy of 10^{-6} with $x^{(0)} = b$ in second norm.
- d) Calculate $x^{(3)}$, by rounding off up to the third digit after the decimal point (included). Answer: The exact solution is (1, 0, -1).

6) A system of linear algebraic equations is given. Solve it using a suitably chosen method and an accuracy of your choice.

$4x_1$	$+0,24x_2$	$-0,08x_3$	= 8
0,09 <i>x</i> ₁	$+3x_{2}$	$-0,15x_3$	= 9 .
0,04 <i>x</i> ₁	$-0,08x_2$	$+4x_{3}$	= 20

Answer: Tentatively at $x^{(0)} = (2,3,5)^T$ the third iteration gives

 $x^{(3)} = (1,90923; 3,19495; 5,04485).$

Author: Iliya Makrelov, ilmak@uni-plovdiv.bg